If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-8x-21=0
a = 2; b = -8; c = -21;
Δ = b2-4ac
Δ = -82-4·2·(-21)
Δ = 232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{232}=\sqrt{4*58}=\sqrt{4}*\sqrt{58}=2\sqrt{58}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{58}}{2*2}=\frac{8-2\sqrt{58}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{58}}{2*2}=\frac{8+2\sqrt{58}}{4} $
| 10(3)+y=-45 | | Y3+-5y2+3y+9y=0 | | 0.45-x+2x=1.333 | | -10=9+r/4 | | 14/1000000=x/100 | | 2d≤=6 | | -9y+8=152 | | 11+2x=(x+2) | | z(3z+1)=14 | | O.80x+30.00=2.30x+30.00 | | 4-3d=1 | | 4x+56.2=128.2 | | 0.41/18.45=v | | 0.80x+30=2.30x+30 | | 20x+4=24x | | g(g-6)=27 | | 5x+20-20-40=180 | | 0,25(4x-3)=3x | | -32h=-256 | | 10t=5=20 | | 5(x−2)=25 | | 43-d=8 | | 6c+12=-5c+4+9c | | x2-9=-13 | | −7(y+10)−11=−88 | | 4-+21=7x-12 | | x=14+40 | | 3^(2x-6)=81 | | 36k^2-121=0 | | 19/24=5/6t+-1/4 | | (7/y)^2+y^2=50 | | 6–3x=24 |